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SECTION T

INTRODUCTION

Turbomachine flow fields are three-dimensional with a variation in flow

direction, flow velocity, temperature and pressure occuiring in both the

radial and circumferential directions. The temperatures, pressures and

turbulence levels encountered necessitate both simple and structurally

sound probes and/or sensors. The harsLl turbomachine environment makes

multi-ported, pressure probes particularly attractive for measurement of

flow direction.

Pressure probes usually consist of aerodynamic shapes with a symmet-

rical arrangement of sensing holes. A number of different geometries have

been investigated and some typical cases are reviewed in references 1

through 15. A more general treatment of probes is given in references 16

and 17.

Pressure probes are normally employed in either the stationary or

nulling mode. In the nulling or equal pressure mode, the probe is oriented

such that each of the side ports, see Figure I for instance, reads the same

pressure. The probe position is noted and the flow direction determined.

In the stationary mode, the probe is fixed and the top-to-bottom and side-

to-side pressure differences are noted. Calibration functions are then

used to find cx and . The static and total pressures can also be deter-

mined in a similar manner.

Both methods offer advantages and disadvantages. The nulling techuique

tends to be the most accurate. The probe can be designed for maximum

sensitivity at small angles. It offers the disadvantage, however, of

considerable mechanical complexity particularly in three-dimensional flow

fields. The stationary probe method, while mechanically superior to the

nulling approach, tends to be less accurate, especially at large flow

angles. Despite the accuracy of the nulling technique, this technique is

considered inappropriate for turbomachine measurements because of its related

mechanical complexity. Consequently, only stationary probes are considered

in this work.
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Since the probes are to be used without rotation, the sensitivity to

flow angularity is extremely important. While values of this parameter are

available for a number of calibrated probes, this data is only of limited

value in synthesizing a probe geometry yielding a desired angular sensi-

tivity. Therefore, a general analytic model has been developed using

slender body theory and this is discussed in Section 2.

In order to verify the analysis as well as calibrate a series of probes

for use in an upcoming compressor test, the angular, static and total

pressure sensitivities for a five-ported, conical probe nave been deter-

mined experimentally. These tests are discussed in Sections 3 and 4. The

results of the measurements are compared with the mathematical model of

Section 2 in Section 5.

In addition to the probe sensitivity which is largely dictated by aero-

dynamic considerations, alignment and manufacturing defects also influence

the accuracy with which flow angles and static and total pressures can De

determined. Effects of this nature are discussed in Section 6. Some

optimum probe geometries are also postulated.

3



SECTION II

A MATHEMATICAL MODEL OF PROBE AERODYNAMIC BEHAVIOR

2. 1 Objectives

The objective of an aerodynamic probe - in the present context - is to

determine the magnitude and direction of the velocity vector. This trans-

lates into a measurement of pressures which - by means of calibration

functions - are then converted into flow angles and total and static

pressures. The flow field parameters should be accurately measured with

tile probe, itself, creating a minimal flow disturbance. The probe must

also be structurally sound - the last two requirements are somewhat at

variance.

A typical flow direction probe naving an "aerodynamic shape" can be

thought of as a slender body, i.e., the body radius is much less than the

body length. The use of slender body theory in til analysis of aerodynamic

probes, thus, immediately comes to mind. There irc, thuwever, shortcomings

associated with this approach. Tile major one being that the rate of change

of body radius with respect to body length must also be smail. this

feature precludes stagnation points in a slender body approach.

Of course, a complete description of the flow field around an aero-

dynamic probe can be generated by numerically solving the three-dimensional

potential flow equations, see, for instance, references 18 and 19. While

this approach is more accurate than sleauer body theory, it does not lend

itself to synthesis or prooe shapes. Furthermore, analytic calibration

relations are not obtaineu and considerable insight into the physical

processes is lost. Consequently, slender body analysis will be employed in

tne ensuing analysis.

2.2 Basic Formulation of Slender Body Theory

A slender body of revolution in a cross-flow is shown in Figure 2. The

body itself can be describea in terms ot axiai, z, and radial, r, coordi-

nates with

r = R(z) (1)



r z

V(X

(zI /z)

Figure 2. Slender Body of Revolution in a Cross-Flow
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Following Shapiro, reference 20, the differential equation for the

velocity potential, D, can be written as

- c2)/rr+ (1 -"+ (J2 C-4 z - 2 - *zr

rD Oz + ,_2_
-2 22 -2 2 2 ( + 2 r22 (2)

r 2c 2re rc2  6r r rc

where

2 2 k-li +r2 + + (z2)o 2 r r(2 1

and

v~r . V (0)= 4i0 v (Z) = ID (4)
ry r z

The subscripts r, 0 and z denote partial differentiation, i.e.,

=D-= etc.
r Dr'

Equation (2) can be rewritten in terms of a perturbation velocity

potential, , by expressing the potential . as the sum of the perturbation

due to the body and the potential due to the external flow, V,. It then

follows that

Dr = VOo(r) + v(r) r(Voo(0 ) + v ( O ) ) z = Voo(Z) + v (z )  (5)

with the perturbation potentials defined as

tl = v(r) rv(0) 
v (z )  (6)

If it is now assumed that the perturbation velocities are much smaller

than the free-stream conditions, i.e.,

6



v(r) v(0) v(Z)
V' Vo ' V «

then

err r r r 2 o + (-MO 2 ) zz = 0 (7)

following Liepman and Roshko, reference 21. Note that M= V./co.

The boundary conditions on the body surface can be written as

grad (. grad F = 0 on F(r,6,z)

when F(r,e,z) = r - R(z). With grad Vo + grad ) = Vo + v, then equa-

tion (8) becomes

(V +v). grad F = 0 on F(r,0,z) = 0

and

Vo(r)+v(r) F +Vo(Z)+v(Z)] F

[V O + vr + [V ( = 0 on F(r,6,z) = 0 (8)

The outer boundary condition is simply

v , v O, v Z 0 r - oo (9)

Equations (7), (8) and (9) comprise the basic relations for the pertur-

bation flow around a slender body. The solution of equation (7) subject to

the boundary conditions of equations (8) and (9) is discussed in the

following section.

2.3 Solution of the Partial Differential Equations

The system of equations of Section 2.2 is generally solved by using

superposition after subdividing the flow field into two elements - the

first being the axisymmetric flow past the body of revolution and the

second being the transverse and/or lateral flow past the same body. These

conditions can be expressed mathematically as

7



+r (1)
(rr r

Axisymmetric Flow

r() =v(r) = Cz) dR F(r,Ez) = 0 Past a Body (10)

of Revolution

(r) (z)
v v 0 r

and

r(2) (2)

(2) + + 2 (2) 0
rr r r zz

Lateral Flow

v (r ) = -V (r) F(r,H,z) 0 Past a Body (11)

(r) (6) (Z) of Revolution
, v ,v 0 r +

(1) (2)
with =  (  + 2

Equation (10) can be written in terms of a source distribution, q(z),

per unit length along the z axis following Sears, reference 22. This

yields the integral equation

f q(F) d(2)

0 (Z)2 + 2 r 2

2Cr) (z)
where C-M 2. The velocity components v and v are then given by

v (Z) =z() i£ (z- )z-)q(Q d 13
z 4TT + 'r,13/2 (3

and

(r) 6r q(
- t(z_8)2+ 2 213/2

0 8



At this point the source distribution function q(U) is unspecified. in

essence, an arbitrary specification of q produces an arbitrary body R(z).

Presumably, q( ) could be systematically evaluated until the boundary

conditions of equation (10) were satisfied. This is obviously unsatisfac-

tory and an approximate technique yielding a direct solution was developed

by Laitone, references 23 and 24. He presumed that q([) could be written as

W n
q()= q(z+ 6 rn) = (6 rn) (n)

n=O q (

It thus follows that

(Z-z)/6r

(6r) n-f(n) f n+1dr,

z - 46 n! (n2+1) 3 /2

-z/6r

(14)

(Z-z)/6r

~() 6 )n-i(1) 1 (6n f(n) f ndn
r =4---6 n= 0  ()-z/6r (1+i)3/2

The integrals in equation (14) can be evaluated on a term-by-term basis

and

(1) 1 - __ (z) EV ~r ~ 1 'i-)+''

z + _____ _______

z - 6 z

q,(Z) z + +n .. . +

/(Zz)2+6 
2  _-z+ / ( -z)2+r7

" z z2 (p,-z)2 -7 +
~ q l(z) [ P (-z)'+ 6 'r + 2 (-z) ' -2 r + ...

r (1) l 2q(z) (15)

9



for terms of order less than 6r. q(z) can now be related to the body

coordinates through the boundary condition on the body and

(1) 1 2q(z)I (z)R,
=4-7 6R + V

where R' denotes dR/dz, etc. It thus follows that

q(z) = 2Tr6V.(Z)RR ' = 6V (Z)s '  (16)

where S denotes the body cross-sectional area, 7R 2 . With q(z) related to
the body cross-sectional area, the velocities, i.e., ( and (1)

z r
completely defined.

The lateral flow past the body can be determined in a similar manner by

noting that if (1) (r,z) is a solution of equation (10) then both

sin 0r ( I ) and cos a#r are solutions of equation (11). Using term by

term integration and applying the boundary condition on the body yields

(2) V" ( x ) cos 0 + sin Sj

(2) V"(y) cos 0 - V (x )  sin S (

0 7f -- (17)

(2) Voc,(x) cos 6 + V. ( y ) sin S'l

z iTT

2.4 The Velocity Components and Pressure Coefficient

Equations (15), (16) and (17) can be combined to yield the perturbation

velocities and

= ( V (z) (R)' -(V(x) cos 0 + V (y ) sin 0)()2
V(r)___(y

r \r)

v (V y ) cos 0V (x) sin 0) R (18)

(z))  (oO y)) ,
__

= (Z V (Z)f + (V' (x) Cs + V
( y ) sin 0) (R)'

r

10



,, W V () and V. ( can be related to V through the angles a and
The pressure coefficient is the major concern in probe analysis and

this parameter can be related to the velocities by means of

P + pV. 2 [1 V (19)

In terms of the perturbation velocities v, the above relation becomes

P = o - 1 [ 2  2 .;+ v2

where v is evaluated on the body surface. The pressure coefficient, C is
P

defined as

~ 2
P-PW V- .v

C p -2 -2VWo2 - v 2 (20)

Following Karamcheti, reference 25, v2 can be approximatea as [v (r) +

[v) and the pressure coefficient becomes

C V 2 = [v0( ] [-f-(R')2]+ [V (x)]2[l - 4 s i n
26 ]+ [Vco(Y)]2[l - 4 coS2l( ] +

Vo(Z)Vo(x) [-4R'cosO]+Vo(Z)V, (y)[-4R'sinO] +

Voo(X) V [8sinecosO] (21)

and the body surface function f is

f - _ - (R 2 ) i + (22)1 qzZ+6Zr (-)+6r

(R2 , ' Z-z + z + Zn -z+zZ6r 1K
S/(9£-z) 2+<~r2  /zL+6z rz L9-z+/(9,-z)/+6LrZ

, I z p, Z)
(R2 )'" +r /(-z) 2+r + 2/(-z)Z+6r/ - 2/z+r 7  +"'"

/zL+irL /(9~z)~Sii

[ . .. . . 11



Equation (21) can be rewritten in terms of the angles (o and C by noting

that

V(x) = V sin

V (y ) = V sin u cos (23)

(z) = V Cos 0 Cos

and, thus,

C = cos2Cc(cs 2o[-f-(R') 2 + sin 2 [1-4sin 2 o + sin2cos2 B1l-4cos2o] +P

coscsin2 [-2R'cos0j+ sin2acos 2[-2R'sinO] +

sin2acos3[4sin~cosO] (24)

where f and R' are evaluated on the body surface, i.e., r = R(z).

2.5 Angular and Static Pressure Sensitivity

The flow angularity is normally determined by differencing the measured

pressures between the side and top and bottom parts, see Figure I for

instance. Since these pressure ports are at the same z and R locations,

the pressure difference is generated by subtracting C values at different
P

0 locations and

AC = -4sin26(sin26 -sin 201)- 4sin
2 cocos 2 3(COs 2O 2 -cos 2 el) -p

2R'cosasin2B(cos 2-cosel)- 2R'sin2acos 2 B(sin0 2 -sinO1 ) +

4sin2cicosB(sinO 2cos0 2-sinOlcos61 ) (25)

The sensitivity to changes in flow angle is defined as AC pOt or

J,' C /'. Tile former can be written as
p

12



3AC
= _4sin2acos 2 (cos 2

2 -os 2 0)+2R'sinxsin28(cos0 2-cos0 1) _

4R'cos2t cos28(sinO 2-sin01 ) +

8cos2icosB(sinO2cosO 2-sinOlcoso1 ) (26)

This expression can be considerably simplified by choosing 01 and 02 as 900
0

and 270 respectively. Equation (26) then becomes

3AC
P = 8R'cos2ccos2 8 (27)

Note that the sensitivity to flow direction in one plane depends to some

extent on the flow angle in the other direction.

3AC /38 can be determined in a similar manner with 01 and 62 taking the
P

values of 0 and 180. This yields

9AC
- = 8R'cosacos2B (28)

Note that the two expressions, i.e., AC /3ci and 3AC /38, are not symmetric

in terms of ( and even though equation (21) is symmetric in terms of V.

V and V(z) This is due to the definition of a and 6. a is refer-

enced to x, y and z while 8 is referenced to a vector rotated through the

angle ,x. If both ti and 8 are referenced to the x, y and z axes, then equa-

tions (27) and (28) - although somewhat more complex - are symmetric with

regard to flow angle.

Equation (27) is plotted in Figure 3. It is quite apparent from both

the matL -matical relation and the figure that the probe sensitivity -

regardless of shape - depends on x and P. A 10% reduction in sensitivity

occurs for (I and 8 of 100. Note that 3AC p/3 is the same for both posi-

tive and negative values of ( and 6.

The averaged pressure coefficient can be used to determine the actual

flow field static pressure, i.e., p . Cp is evaluated at a number of

theta values, normally 00, 900, 180 and 270 , the results summed and

divided by the number of points. Mathematically, this becomes

13
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<C C = os1cos ?F[-f-(R')2]+sing " +

sin ?(COS 2B F- Cos 2o - R'coscxsin2P,-- Cos()
\ i=2 i=2

5 5

2R'sin2acos
2[3 L sinG. + sin2occos L sinO .cosO. (29)

i=2 i=2

When Q. is chosen as 00, 900, 1800 and 2700, the above relation becomes

<C > = 
Cos

2 
Rcos

2 [-f-(R') 2 ]- sin 2 3- sin2 cos2 B (30)

which is approximately parabolic with regard to a and B. Equation (30)

also has the same value for both positive and negative ct and s's.

The analysis is restricted to small perturbation velocities and, thus,

a total pressure coefficient cannot be directly derived. A quasi-total

pressure can be formulated by integrating the pressure over the body

surface area and resolving this force into x, y and z components. An axial

pressure can be generated by dividing the z component by the probe cross-

sectional area. This has the form of a total pressure but is Less in

value since the flow is never stagnated - except at z = 0 where the body

cross-sectional area is also zero. The functional form of this relation is

P-Pm Cos2 cos2 f 2  2 2 (31)
CPz q R2 (R)[-f-(R') ]dz- sin2P- sin 2 cos2  31)

where 9 denotes the length of the body in the z-direction over which the

integration is to be performed. The coefficient again decreases in an

approximately parabolic manner with o and B.

The analytical relationships of this section are compared to measured

probe characteristics in Section 4. The experimental data in conjunction

with the theoretical results is used to dcmonstrate the general character-

istics of probes in Section 6.
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S i: TION I II

EXPERI MIENTAL PROGAM

3. 1 introduction

While the reiationsnilps of Section 2 are valuable for characLerizaLion

of prode behavior, they are not capable of replacing individual probe

caiibrarions. Tis is due to the limitations of the derivation itself,

i.e., invlscid flow ana slender body assumptions, as well as the manufac-

Luring irregularities in the probe, i.e., asymmetric constructLiou,

misalignment of pressure ports, static ports not normal to probe surface,

etc. Regardless of the accuracy of tile tneoretical derivations, tile latter

,tIeCLs May necessitate individual probe calibrations - particularly for

sad 11 probes. In the present context, the data generiLed in tLe calibra-

tron can oe used to assess tile reliability of the mathematical model as

w,i't as trnish tie angular and Mach number characteristics o1 L n prone

WLiciCl wiil, in turn, be used in tile experimental study ol compro'ssor

perrormance, reference 2o. The details of the probe caill)ralin, 11

discussed in the following sections.

3.2 Experimental Apparatus

Te probe employeu in the calibration process con ,,.L

trutc ted cone with four side pressure taps nominall% nm:,

surlace. The maximum conic diameter is 3.]7D1 mm (0. 1 . . .

or total pressure port having an internal diameter ot 0.'-)

and the side ports naving internal diameters of 0.457mm .

photograpti and a dimensioned sketch of the probe are shown iti Fr i:

Tue probe was calibrated using a DISA 55D90 calibration sysLoll, r,-- -

ence 27. Tnis system consists of a pressure controller, stagnation cliamber

ani aozzle asembly and a thre,::-axis probe positioniing system. The system

.2 kuments are shown in Figures 5 and 6.

Tile flow and/or pressure controller utilizes a three-stage pressure

regulator producing an extremely stable flow which is supplied to the

stagnation chamber in the nozzle assembly. Tile stagnation chamber contains

a honeycomb flow straightner and four turbulence damping screens. This

generates a very low turbulence level flow field. The unit is fitted with

16
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Figure 6. Stagnatiion CliaMLutr, Nozzle and Probe Positioning Assemnbly
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41;

four interchangeable converging nozzles. The velocity can be varied from

0.5 m/sec (1.6 ft/sec) to sonic conditions by interchanging nozzles and

varying the stagnation chamber pressure levels. The pressure controller is

nominally supplied with air at an absolute pressure of 144.8 x 108 kgr/m
2

(100 lbf/in 2 ).

The nozzle chosen for the experimentation has a discharge area of 60mm2

(0.093 in 2). Probe blockage corrections - discussed in Section 3.4 - indicated

that this nozzle could be used for all Mach numbers investigated. The fairly

large mass flow rates at the higher Mach numbers exceeded the capacity of the

DISA pressure controller and it was replaced with two series installed,

control valves for the high Mach number tests. The flow remained stable

but controllability was sacrificed.

The probe is mounted in the potential core of the free jet discharged

from the nozzle. The probe positioning mechanism is mounted on a vertical

column which is permanently fixed to the main nozzle unit. The nozzles can

be interchanged without removing the probe. The probe can be rotated in

both the angle-of-attach, a , and side-slip, , planes - a can be measured to

an accuracy of ± 0.10 while the resolution is limited to ± 0.50. The

probe can also be positioned both axially and in roll. All four of these

positioning freedoms are shown in Figure 6. The probe tip is nominally

located one nozzle radius downstream of the nozzle exit plane. The size of

the probe relative to the nozzle limits a and to

-200 < a < 200

0 < < 200 (32)

3.3 Measurement Methods

The primary objective of the calibration was to determine the angular,

AC and ACp0, averaged, <Cp >, and total, C p, pressure coefficients. These

are easily generated from the measured probe pressures and the nozzle total and

static pressures. Since the parameters are all - more or less - Mach number

and Reynolds number dependent, the gas temperature and relative humidity must

also be measured.

The angular coefficients are defined as

20



AC P2 - P4(33)

P3 - Ps

ACp - _ (34)Pt P"

which correspond to the definitions of Section 2. The averaged pressure

coefficient can be defined as

<C > = 
< P > - p

Q (35)
p Pt - P

where <p> = (p 2 +p 3 +p4 +p 5 ). The total pressure coefficient follows the

definition in equation (31) and

p - P (6)

Alternate formulations are certainly possible, i.e., replace p- with

p,-p in equations (33), (34) and (35) and redefine C as (pt-Pj)/pj-<p>),

but the above most closely follow the theory and should exhibit more nearly

universal behavior.

In any event, all coefficients represent pressure differences and one

is tempted to measure these directly. Direct measurement of the differ-

ences is, however, complicated by the requirement to average the side port

pressures. When all the necessary pneumatic connections are formulated,

this task becomes formidable. Furthermore, the frequency response - which

is already of order of minutes due to the small tube diameters - is further

degraded as a result of the tubing, connectors and fittings required in the

differencing and averaging processes. Note also that the pneumatic connec-

tions are designed for a specific series of coefficients. This consider-

ably limits the computation of different forms of coefficients in the data

reduction process.

As a result of these considerations, the pressures p,1 P 2 p 3  P ' Ps4

and Pt were measured independently using a bank of inclined water

manometers. The manometers could be read to 1.270mm (0.05 in) of water in

the vertical position. With the manometer bank inclined at 100, the

21



maximum pressure resolutton then becomes 0.221mm (0.009 in) of water. At a

Mach number of 0.2, the maximum angular resolution - as determined from
0 0

pressure measurements - is approximately 0.02 for a 30 conical probe.

This is well in excess of the angular measurement accuracy of 0.1 and,

thus, the pressure measurement accuracy as afforded by the inclined water

manometers is sufficient. In terms of pressure differences, the angular

probe sensitivity scales with the dynamic head and, thus, pressure measure-

ment resolution can be increased with increasing Mach numbers while main-

taining tiie same pressure based, angular resolution. In the test program,

tne manometer inclination was increased at the higher Mach numbers which

reduced the pressure measurement resolution but maintained the angular

resolution at its low Mach number value.

The gas total temperature was measured in the nozzle unit stagnation

cuamber prior to the flow conditioning devices with a bimetallic element.

Air temperatures nominally varied from 20 to 30 C. The relative humidity

of the supply air remained below 5% as measured by an Environmental Tek-

tronics Corporation PsYchor-dial Mode) CP-1L7 psychrometer.

As previously noted, the probe can be rotated along its longitudinal

axis. It is essential that the probe side ports be aligned with the (x

and B axes respectively. This alignment was done by rotating the probe

uLItLI the p 3-p 5 pressure differential was symmetric throughout the usable

range. This proved to be a time consuming process because the probe was

extremely sensitive to even the slightest rotation and the maaometer

response was very slow, i.e., approximately five minutes were required for

the manometers to come to equilibrium.

3.4 Aerodynamic Considerations

The use of a free jet in the calibration process presumes that the jet

velocity in the vicinity of the probe is uniform and equal to the value of

the nozzle exit plane. Two major factors can influence the above assump-

tions. First, the presence of the probe in the jet creates "blockage"

which causes the jet to spread and can result in a reduction of velocity.

In a closed wind tunnel, probe and/or model blockage results in velocity

increases. Secondly, the jet potential core decreases with downstream

distance yielding a spatially non-uniform flow field.
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If the free jet is assumed to be similar to an open jet wind tunnel,

then probe blockage effects can be computed using the wind tunnel tech-

niques. Following the methods of reference 28, a velocity decrease, i.e.,

AV./VW, of approximately 1.7% will occur for Mach number of 0.2 increasing

to 3.1% at Mach numbers of 0.6. The results are based on a jet nozzle

diameter of 8.740mm (0.344 in) and a probe diameter of 3.175mm (0.125 in).

The blockage increases rapidly with reduction in nozzle size reaching a

value of 12.2% for a nozzle diameter of 5.528mm (0.218 in) at

M = 0.6. In general, the blockage obtained with the larger nozzle,

dn = 8.740mm, is satisfactory; smaller nozzles, however, should not be

used.

The decrease in jet potential core width can result in an apparent

spatially non-uniform flowfield if the probe is not positioned within the

potential core - a potential problem at large values of Ot and . The jet

potential core decreases at the angle 0e which is approximately 6-70,

reference 29. This value implies a potential core having a diameter of

about 77% of the nozzle diameter d downstream of the nozzle. Data from
n

reference 30 indicates a potential core diameter of about 0.85 d at the
n

same axial location. Consequently, 6-7 ° may slightly overestimate the core

decrease but should yield conservative results. The probe in the aligned

and maximum displacement positions is shown in Figure 7. It is well within

the jet potential core even in the latter case.

The nozzle of diameter 8.740mm (0.344 in) coupled with the probe of

diameter 3.175mm (0.125 in) yield acceptably low blockage values at Ot and

values of up to 200 Furthermore, the probe tip and side ports remain

within the potential jet core at the same angles.
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SECTION IV

EXPERIMENTAL RESULTS

4.1 Introduction

The experimental data was acquired using the apparatus and measurement

techniques described in the previous section. Probe calibration data was

taken at three Mach numbers and 91 angular positions per Mach number, i.e.,

8 = 0, 2.5, 5.0, 7.5, 10, 15, and 20, and a = -20, -15, -10, -7.5, -5.0, -2.5.

0, 2.5, 5.0, 7.5, 10, 15, 20 for each 8 value; M = 0.2, 0.4 0.6. In

addition, <C > was evaluated at 16 Mach numbers ranging from 0.05 to 0.60.p
Data reduction and plotting was automated using the AF Academy computer

system. The data reduction techniques and the data itself are discussed in

the following sections.

4.2 Data Reduction Methods

The angular, total and static pressure coefficients were computed as

defined in Section 3.3. The velocity, Mach number and Reynolds numbers

were computed using the algorithms of reference 26. Since the nozzle

assembly discharges to atmospheric pressure, the Reynolds number and Mach

number are uniquely related with Reynolds numbers of 10505, 23896, and 37853

based on probe diameter, corresponding to Mach numbers of 0.2, 0.4 and 0.6.

The probe Reynolds numbers encountered in the compressor tests will

range from 29700 to 61052. This exceeds the calibration values at the

equivalent Mach number; however, the probe boundary layers are undoubtedly

turbulent in either case and, thus, the difference in Reynolds numbers

should not influence the calibration functions.

4.3 Experimental Data

The experimental results are presented in Tables 1, 2, 3 and 4 and

Figures 8 through 19. Table 1 and Figures 8 through 11 summarize the data

for a Mach number of approximately 0.2, with Table 2 and Figures 12 through

15 corresponding to M 0.4, and Table 3 and Figures 16 through 19 dealingo

with daca of M 0.6. Table 4 and Figure 20 contains the results of the

fixed position, i.e., a = 8 0, variable Mach number runs, i.e., 0.05 < M <

0.6.

25



0.4'8 - CASE BETA SYMBOL

2 2.5 X Y
3 5.0 Z

0.36 -1 7.5 x
5 10.0 (D
6 15.0 '&
7 20.0 y y

0.2 -

_o.00 I '

-0.12
II

-0.24
I

-0.36

-0.48 -

I I I I I III

-24 -18 -12 -6 0 6 12 18 24

ALPHA, DEO

Figure 8. ACp, versus a and 0 for the Five-ported, Conical Probe,

Ma - 0.2

26



I I I II'II

0.Y y
y Y y y Y y y

y YY
Yy v

0.36 Y

0-*4 7*
0.21

0 0 0 ® 0 0 0 S

0.12 x I x I x x z I

z Z Z ZZ Z ZZ ZZZ z z

x x X X X X X XXXxX x X
&-0.00 ,

19 m w () 0 m a) 9 M

-0.12

CASE BETA SYMBOL
-0.2i 1 0.0 

2 2.5 X
3 5.0 Z
4 7.5 X

-0.36 -5 10.0 (D
6 15.0 ,
7 20.0 y

-0.48

I I I I I I I II

-0.48 -0.36 -0.24 --0.12 -0.00 0.12 0.24 0.36 0.48

A C

Figure 9. ACpa versus ACp% for the Five-ported, Conical Probe

M -c0.2

27



0.06

0. OLL XXZ19!

0.02 - 19
0.02

0.00 *'

@ x
IlY Y * Z

-0.02 -Y
y y

Y

y Y

-0.06
CASE BETA SYhBOL Y

1 0.0 ED
2 2.5 X

-0.08 3 5.0 Z
'4 7.5 X
5 10.0
6 15.0 *

-0.10 7 20.0 y

I I I I I I I I

-24 -18 -12 -6 0 6 12 18 24

ALPHR. DEG

Figure 10. <Cp> versus GX and 8 for the Five-ported, Conical Probe,

Mm 0.2

28



1.05

1.00 1

0,95

Y YYY
0 y Y

0.90 Y
* Yy °

0.85
YYyy

0.80

CASE BETA SYMBOL

0.75 1 0.0 M
2 2.5 X
3 5.0 Z
4 7.5 X

0.70 5 10.0 (D
6 15.0 &
7 20.0 y

0.65

-24& -18 -12 -6 0 6 12 18 24&

ALPHA. DEO

Figure i1. Cpt versus a* acid for the Five-ported, Conical Probe,
M 0.2

2)



0.48 CASE BETA SYMBOL
1 0.0 (D
2 2.5 X
3 5.0 Z

0.36 3 7.5 X
5 10.0 a)
6 15.0 &,
7 20.0 y

0.24

I
0.12

II-0.00 0

-0.12

-0.36 -

-0. L8

I I i I III1I

-24 -18 -12 -6 0 6 12 18 24

ALPHR DEO

Figure 12. ACp versus Cx and P for the Five-porteu, ConicaL Probe,
M- 0.4

30



0.8 y y y Y

Y Y

0.36 *

0.2 2t

x X x XX X I

0.12 Z z
z Z z

z
x X X X XX X X X X X x x

-0.00 m~~~ a5 E 3E m m mn mn 19 5 m

-0.12

CASE BETRA SYMBOL

3 5.0 Z

4 7.5 X
-0.36 5 10.0 (

6 15.0 *
7 20.0 y

-0. 48

-0.q8 -0.36 -0.24i -0.12 -0.00 0.12 0.2q 0.36 O.4i8

Figure 13. AC l versus ACp , for the Five-port
ed, Conical PruDe,

0 0.4

31



CASE BETA SYMBOL
1 0.0 i

0.06 -2 2.5 X
3 5.0 Z
'1 7.5 z
5 10.0 a)

0.015.0 7 20.0 y Zm

z z Z

) a) x
-0.02 zz ~ ~ 1 Y YY410.00 Y

-0.02 0

-001z y y

(9 y

0 Y Y-0.06 0

-0.08

-0.10

I I I I I IIII

-2A -18 -12 -6 0 8 12 18 2,

ALPHA. DEG

Figure 14. <Cp> versus cx and R tor the Five-ported, Conical Probe,

M, 0.4

32



1.05

0.95 - YY Y

y

Y
0.90 y

- 0.85
Y

0.80

CASE BETA SYMBOL
0.75 1 0.0 0

2 2.5 X
3 5.0 Z
4 7.5 X

0.70 5 10.0 CD
6 15.0 *
7 20.0 y

0.65

I I I I I I III

-24' -18 -12 -6 0 6 12 18 24

RLPHA. DEG

Figure 15. Cpt versus cx and P, for the Five-ported, COtILCa[ Prooe,
t 0.4

33



II ! I ! i !I

0.48 CASE BETA STHBOL
1 0.0 E

3 5.0 Zo. 2 2 .5 zxI

5 10.0 ( y
6 15.0 0
7 20.0 y

0.24 -

0.12 -

U
-0. 00

-0.12 -

-0.24 5Y
EU

-0.36 -

-0.48 0

-24 -18 -12 -6 0 6 12 18 24

ALPHA, DEG

Figure 16. ACP versus rx and 6 for the Five-ported, Conical Probe,
M 0.6

34



0.y Y y y

Y

0.36

0.24

0.12 z Z

z Z Z Z Z Z Z Z Z ZZ Z Z

X X X XX XX XX XX X X

-0.00

-0.12

CASE BETA SYMBOL
-0.2 1 0.0 

2 2.5 X
3 5.0 Z
' 7.5 X
5 10.0 (
6 15.0 *
7 20.0 y

-0.48

1 I I I I I

-0. 48 -0.36 -0.24 -0.12 -0.00 0.12 0.24& 0.36 0.U,8

AC

Figu~re 17. AC, versus ACP6 for the Five-ported, Conical Proue,

MP- 0.6

35



CASE BETA SYMBOL
1 0.0 D

0.06 2 2.5 x)
3 5.0 Z
4 7.5 X
5 10.0 o0. q 615 0 '

Z Z
0. I

0.02 0
z 00

(0 z

-0,01
0.00 0 0

z
-0. 02 1

yy

-0.06 
yY

yy0

-0.08 y

Vy-0.10

Y

-24 -18 -12 -6 0 6 12 18 24

ALPHR DEO

Figure 18. <C > versus a and B for the Five-ported, Conical Probe,
M - 0.6
co

36

- - - -- - - -- -



1.05

1.00 i

0Y . U
Y

0. 90 r y*

0.85 Y 
Y

0.80

CASE BETA SYMBOL
0.75 1 0.0 a)

2 2.5 X
3 5.0 Z
4 7.5 X

0.70 5 10.0 0
6 15.0 *
7 20.0 y

0.65

-24 -18 -12 -6 0 6 12 18 24&

ALPHA. DEG

Fgure 19. Cpt versus and B3 for the Five-ported, Conical Prob,

S0.6

37



00

0 C
00

0
0 C

0

0

0

0
0

0 r!
C,

00

0

0

0

ci 0

0

v0

FIUR 20 <C p > ESSM* O TH F I-OTD

388



The parameters of Section 2, ACp , ACp , <CP> and Cpt, are plotted in

the three groups of figures. Figures 8, 12 and 16 depict the variation

of ACPt with a, 3 and Mach number. Figures 9, 13 ana 17 consist of cross-

plots of ACp versus ACp,. <Cp> is plotted in Figures 10, 14 and 18 for

the three Mach numbers with Cpt plotted in Figures 11, 15 and 19. Figure

20 shows the variability of <Cp> with Mach number.

The probe performance generally confirms to the analytic relations of

Section 2. From Figure 3, it can be concluded that AC and/or ,'Cp,, should

vary linearily with (a and for , over small angular ranges becoming non-

linear as the angles increase. This trend is shown in Figures 8, 9, 12,

13, 16 and 17. The decrease in angular response is particularly evident in

Figures 9, 13 and 17 at the higher values of a and , i.e., ACp; tends to

increase at a lesser rate as ax and exeed about 100.

<Cp'. and Cpt both vary predominately with a 2 and 2 as shown in equa-

tions (30) and (31), i.e.,

< C p> ( - 2-. ) [ - f - ( R ' ) ' ] - 2 
_.2

Q, 2),[ f R dZ f2 (2(37)

CPz R P ( R 2 
2 f - f (R ) 2 ] d z i 2

a

where higher order terms have been neglected.

According to the slender body analysis of Section 2, only the function

f is Mach number dependent and, thus, ACp0, and ACp% should be independent

of Mach number while <Cp> and Cpz are functions of Mach number. This

result is more--or less--confirmed experimentally. The angularity coeffi-

cients are much less Mach number dependent than the averaged static

pressure or total pressure coefficients. This can be seen by comparing

Figures 8 through 11 with Figures 12 through 15 or Figures 16 through 19.

The Mach number dependence of <Cp> is not particularly pronounced in

the subsonic flow regions. Figure 20 and Table 4 show only a modest varia-

tion in this parameter as the Mach number is increased from 0.12 to 0.61.

4.4 Summary of ExperimentaL Results

The angularity coefficients, i.e., flow direction coefficients, and

static and total pressure coefficients behave, functionally, in a manner
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consistent with equations (25), (30) and (31). ACp and ACp, vary linearly

with c and for small and moderate angles while<Cp> and Cpt varying with
A 

2 and 2. Both ACpn, and ACp are independent of Mach number while <Cp>

and Cpt are Mach number dependent. The data scatter is well within accept-

able bounds for angles up to 10 and increases somewhat at the larger

angles. The behavior at the larger angles may be due to flow separation on

the probe itself or flow blockage effects as discussed in Section 3.4.

40



SECTION V

COMPARISON OF THEORETICAL AN) EXPERIMENTAL RESULTS

5.1 Averaged Pressure Coefficient

The subsonic, transonic and supersonic flow field about a cone has been

measured by many investigators. Some typical experimental results, refer-

ence 29, are compared with equation (30) in Figure 21. Note that the

conditions correspond to an angle of attack and side-slip angle of 00. The

mathematical model of Section 2 is limited to subsonic Mach numbers, i.e.,

the Mach number must be less than I on all points of the conic surface.

This corresponds to a freestream Mach number, M., of approximately 0.9 and,

thus, the experimental theoretical comparison has been limited to this

value. The analytic predictions correspond closely to the measured values

over about 75-80% of the cone length. The calculated <C p> values are less

than the measured points over the latter portions of the cone, 0.75 < z/

1.00, with the deviation increasing as the Mach numbers approach one.

The cone of reference 29 has an included angle of 6.983', a length of

139.7mm (5.50 in) and a maximum diameter of 34.214mm (1.347 in). The model

is sufficiently large so that the static pressure ports can be assumed to

be normal to the cone surface. The tests were carried out in two separate

wind tunnels, i.e., NASA Ames 2 by 2 foot and 14 by 14 foot transonic uind

tunnels, and both sets of data agree to within the accuracy of the measure-

ment'. As a consequence, there is every reason to believe that the data is

accurate. The disparity between the measured and calculated results over

the aft-portion of the cone must then be due to a failure of the theory

itself.

The calculated pressure coefficients for the cone probe of Section 4

are shown in Figures 22, 23 and 24. Figure 22 depicts the variation of the

averaged pressure coefficient as - function of position, z/k, and Mach

number. The section diagram shows the location of the static ports and the

point of cone truncation. Figure 23 is a plot of <Cp> as a function of

Mach number while Figure 24 shows 'Cp> as a function of (X and i.

While the general trends of the data are reproduced by the analysis of

Section 2, the overall levels are considerably less than the measured

values. As noted in previous paragraphs, the mathematical model tends to

41



0.15

0.10 ,M = 0.600
00

0.05

.cP 0 z/R
p.,0.5 0 1.0 C

-0.05

-0.10 C

-0.15 C

0.15
M0.797

0.1000J

0.05

c 0 -zQ
p0.5 1.0 ~

0
-0.05

0
-0.10

-0.15

0.15 -

CN

M 0.899 C

0.10 00

0.05
0

cr, 0.5 0 1.0 /

-0.05 0

-0.10

-0.15

42



0.5

\ Figure 22. Catcu tated Average Pressure C0et tIc te[t Io a tCP' n ,

Sect ion as a Funct ion of Pus it ton auO Mach Numbu r

0.4 \\\\

0.3

0.2

0.1
STATIC PRESSURE
PORT LOCATION

Cp 0 z/A
0.5 1.0

-0.1

M.o

-0.2 0.1

0.6

-0.3

0.8

-0.4

0.3

0.2 CONIC

0.1 . EXTENSION " STATIC PRESSURE

o C N T CONE TRUNCATION PORT0 ,r Iii z/v

0.5 1.0

43



4:0

C;- C?

LLr

vv

446



-0.03

-0.06

-0.09

-0.12

-0.15 -0.0

5.0

-0.18 -1.

-0.21

-0. 24

20.0

-0.27

-24 -18 -12 -6 0 6 12 18 24

RLPNR. DEGREES

Figure 24. Averagea Pressure Coetficieiit tor a J00 Cone Probe,
M-= 0.20 and z/. =0.68

45



underestimate the .C values on the latter portion of the cone. OtherP
potential sources of error are static pressure hole diameter and depth,

references 30 and 31, hole geometry, reference 32, hole not normal to cone

surface and turbulence level, reference 33. It was initially believed that

the truncation of the cone might alter the measured static pressures. The

low and variable Mach number tests of Section 4 were, however, repeated for

a sharp-nosed cone with little or no change in the measured pressure

coefficients. As a consequence, it was concluded that cone truncation - of

the magnitude shown in Figure 22 - does not influence the static pressure

measurements.

The magnitude of corrections for pressure tube geometry are of the

order of the difference between the calculated and measured values if the

static holes are slightly rounded, i.e., a correction of approximately

0.5-1% of the dynamic head for a corner radius of 0.114mm (0.005 in). This

effect, coupled with the underestimate of Figure 21, are probably the main

cause of the discrepancy between the calculated and measured values, e.g.,

Figures 20 and 23 and Figures 10 and 24.

The difference between the calculated and measured results again points

out the need to calibrate individual probes, particularly the extremely

small sensors used in turbine engine tests. It is unlikely that probes of

the type and size discussed in Section 4 can be manufactured without some

anamolous behavior.

5.2 Angular Pressure Coefficients

The angular pressure coefficient data of Section 4, AC and AC can

be compared to the theoretical results of Section 2, equation (25). Equa-

tion (25) infers that AC is proportional to the local surface gradient,pa

dR/dz, the sin 2a and cos 2f. As a consequence, AC is approximatelypa

linear with a for small angles of attach, is independent of Mach number and

is only slightly dependent on for small 3 values. Calculated values

for AC pa and AC as a function of a and 6 are shown in Figure 25. These

results are in general comparable to Figures 9, 13 and 17, although the

magnitude of pressure coefficients is overestimated by the theory. This

may be due to the error sources noted in Section 5.1. Rounding of the
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pressure ports coupled with a slight misalignment of tiie ports, i.e., not

normal to the local cone surface, may also contribute to the slightly

o0't' _L, t i m; t d vu Inues.

The experimental values are reasonably independent of Mach number as

predicted with only slight variations over the Mach number range 0.2 < M <

0.6. The angular functional relationships of equation (25) characterize

the data up to 3 values of 15° . Beyond this point, the curves assume a

double-lobed appearance which is probably due to flow separation.

5.3 Calibration Functions

The theoretically derived averaged pressure coefficient agrees well

with experimental measurements carried out on large cones. The agreement

- in an absolite sense - is, however, much poorer on the smaller cone

probe. The functional variation with a and is correctly predicted by the

theory bUt ag. a the magnitude of change is slightly overestimated by the

l 1 " "2 t n .

The angilar pressure coefficients of Section 2 exceed the measured

values with the dependence of ACp, and ACpB on ,, B and correctly repre-

sented by the theory. Since the functional relationships are correctly

predicted by the slender body theory, the equations of Section 2 can be

used as a tramework for a series of empirical calibration relations. These

will take the form

p= f(MI)COs2 cOs2S - CXsin2i - C2 sin
2cxcos23

,C p,= C sin2rxcos 2 s

(38)

Cp = Ccosasin23

CPt = 2 (M-)COS2(tcOs2B- C 5sin 2 - C 6sin 2 cOs2 3

where f (M ) and f,(M ,) are functions of Mach number and C1 , C 2 , C 3, C, C 5

and Cr are constants. All of these parameters will depend on the body

geometry.

Note that the functions of Section 2 are valid in a comparative sense,

i.e., the effects of Mach number and body geometry on the pressure coeffi-
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cients can be compared for a series of probes. This implies that the

theoretical relationships can be used in the preliminary design of pressure

probes whiLe the final configuration must be calibrated.
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SECTION VI

GENERAL CHARACTERISTICS OF PRESSURE PROBES

6.L Introduction

The theoretical relationships of Section 2, while aot capable of

replacing individual probe calibrations, are suitable for evaluating sensor

geometry and Mach number effects. Furthermore, effects of probe alignment

on averaged and angular pressure coefficients can also be determined.

These effects will be discussed in the ensuing sections.

6.2 Influence of Body Geometry and Mach Number on the Pressure Coefficients

As was noted in Section 5, the angular pressure coefficient is

primarily a function of body geometry and flow angle and is independent of

Mach number, i.e.,

ACp = 4R'sin2acos (39)

Consequently, the sensitivity to flow angles is directly proportional to R'

or dR/dz. For example, the angular sensitivity, MCp/a, of a 400 included

angle cone is 2.06 times greater than that for a 200 cone. It would then

seem desirable to choose a large cone angle in an effort to improve angular

selnsitivity.

Since the probe is also to be used to measure total and static

pressure, the effect of increasing cone included angle on these parameters

must also be investigated. Calculations for a 200 and 400 cone have been

carried out using equation (30) and these results are shown in Figures 26

and 27. These figures depict the variation of <Cp> with position, z/P, and

Maca number. As can be seen, <C p> increases with increasing conic angle as

does the sensitivity to Mach number, i.e., at a given z/ location <Cp>/M.

increases with increasing cone angle. The latter infers greater Mach

number dependence for the static and total pressure coefficients - an

undesirable characteristic.

While increasing the cone angle increases the angular sensitivity, it

also increases the Mach number sensitivity. Hence, a trade-off between
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angular and Mach numbe- sensitivity must be made and the cone geometry

selected for a given application, i.e., flow angle and Mach number range.

While flow direction probes are normally formed from either cones or

hemispheres, other shapes may be used. Figures 28 and 29 show the varia-

tion of <Cp >with z/Q and M. for two bodies having

R z -tan6 (40)

so that dR/dz is equal to 1/2 the value for a cone of included angle 2 6 C at

z = Z. <Cp> tends to be much less sensitive to Mach number than the conic

sections of Figures 22 and 26. At the same time, the angular sensitivity,

dR/dz, is also reduced unless the static pressure ports are located well

forward on the body, i.e., z/P % 0.2. While this geometry appears to be

superior to the coLnes, it might offer manufacturing difficulties since the

static ports must be located in a region of fairly small radius. If a

relatively large diameter probe can be used, this may pose no problem.

Again, the sensor geometry must be chosen for a specific application in

order to satisfy the trade-off between measurement accuracy and manufac-

turing difficulties.

6.3 Effect of Probe and/or Side Port Alignment on the Pressure Coefficients

The influence of probe and/or side port alignment on the angular and

averaged pressure coefficients can be ascertained from equations (25) and

(29). The port locations denoted by ei can be rotated relative to the
0 0 0 0

design locations of 0 , 90 , 180 and 270 and the resulting coefficients

computed.

Probe misalignments are of two types. The first consists of a manufac-

turing defect where one port is angularly or axially displaced relative to

the other three static taps. A case of this type is plotted in Figures 30

and 31 for a 300 cone probe with one port displaced 2.50, i.e., . 2.) , 900
0 0

1800 and 2700. This results in a skewing of ACpRX and ACp,,, with <C1)> also

displaced. The nonlinearity in the differential pressure coefficients is

quite obvious at the higher ( and (- values.

The second misalignment consists of a rotation of the probe body itself

relative to a fixed or predetermined coordinate system. This could occur
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in a turoomachine application during installation of the sensor. In this

case, all 0 values are displaced by the same amount. The angular and

averaged coefficients are plotted in Figures 32 and 33 for a port displace-
0ment of 2.5 .Note that ACp, and ACp are strongly influenced by the rota-

tion, buL <Cp> is unchanged.

The independence of <Cp> with regard to probe rotations can be employed

to isolate probe manufacturing defects in the calibration process. If

,C pa and ACp,, are skewed but <Cp>is symmetric with ot and/or 3, then thf

probe is merely misaligned. If, however, both ACp¢ - Ap and <Cp> are

skewed, then the probe ports are not normal to one another.
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